The Role of Marine Carbon Dioxide Removal in Addressing Climate Change

Kay Suselj, JPL: kay.suselj@jpl.nasa.gov

Anthropogenic global temperature rise and ocean acidification

IPCC, 2021

Ocean acidification impact on marine organisms (red = negative impacts)

Kroeker et al., 2013

Aggressive carbon emission reduction alone won't prevent dangerous climate change effects!

IPCC, 2021: Negative emissions to keep temperature below 1.5C for SP3 scenario

- 1. There is no reasonable scenario where the emission reductions will be enough to keep global temperature below dangerous levels (e.g. 1.5°C warming with respect to preindustrial levels)
- 2. A "middle of the road" scenario for keeping global warming below 1.5°C requires capture of >400 Gt CO₂ by 2100.

1 gigaton is >100 million African elephants

Carbon Removal Approaches & Geo-engineering

1. Direct carbon capture:

- Large industrial investments
- Nearly impossible to scale to Gton C/yr

2. Geo-engineering, e.g. cloud whitening, aerosol injection:

- Most approaches do not address CO₂ increase (and ocean acidification).
- Unwanted/unexpected weather feedbacks.

3. Nature-based approaches – enhancing natural carbon cycle.

"Speed-up" natural carbon sequestration feedbacks.

Marine CO₂ removal (mCDR): nature-based approach

Advantages:

- 1. The ocean has a virtually unlimited potential for CO₂ storage
- 2. mCDR does not compete for space with other land uses
- 3. mCDR targets and accelerates natural sequestration processes
- 4. Some approaches mitigate local ocean acidification

Challenges:

- 1. Incomplete science understanding of proposed mCDR approaches.
- 2. Quantification of efficiency (models & observations)
- 3. Feedbacks and environmental impacts (predicting & monitoring)
- 4. Large investments possibly leveraging (voluntary) CO₂ markets
- 5. Public acceptance, policy and governance

Multiple (m)CDR approaches are likely needed in addition to rapid decarbonization of our economy to keep the worse effects of climate change.

Ocean Alkalinity Enhancement (OAE) mimics Chemical Rock Weathering

Balance between C species as a function of pH

Ocean Alkalinity Enhancement Approach:

- 1. Increases ocean Alkalinity by adding dissolved minerals (e.g. calcite) increase of surface ocean pH
- 2. The carbon in ocean water dissolves to form bicarbonate and carbonate ions:

$$CO_{2(aq)} + H_2O \leftrightarrow HCO_3^- + H^+ \leftrightarrow CO_3^{2-} + 2H^+$$

OAE moves the carbon balance to the "right" i.e. decrease partial pressure of $CO_2(pCO_2)$... fast process (seconds to hour)

3. The ΔpCO_2 between the ocean and atmosphere can increase CO_2 flux into the ocean ... slow process (months to years)

Project goals – sample questions to be answered

Simulate Efficiency of Ocean Alkalinity Enhancement (OAE) along a transect in the Pacific Ocean.

- Which regions are associated with the highest OAE efficiency (most CO₂ removed from the atmosphere per unit of Alk added to the surface ocean)?
- How fast is CO₂ removed from the atmosphere after OAE deployment?
- How does the OAE efficiency change with the season of OAE deployment?
- How do different ocean processes impact OAE efficiency?

Approach

A one-dimensional model for Ocean Alkalinity Enhancement (OAE) - rapid-mCDR model:

- For details, please see Suselj et al., 2025 JAMES*
- Understanding OAE impact requires simulation of the evolution of OAE perturbed Dissolved Inorganic Carbon (DIC) and Alkalinity (Alk) in the ocean, and additional CO₂ uptake
- rapid-mCDR solves partial differential equations governing vertical evolution of OAEattributed DIC and Alk perturbation, and CO₂ uptake from the atmosphere
- The background ocean state and ocean dynamics (needed to drive rapid-mCDR) taken from ECCO-Darwin ocean data synthesis, representing the best knowledge of ocean state.

^{* (}paper: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024MS004847 and StoryMap: https://ecco-group.org/storymaps.htm?id=114)

Approach

Data and scripts provided on Jupyter-github server (https://hub.jpl-cmda.org/):

- Location with data and scripts: '/home/jovyan/shared/NASA_Summer_School_2024/marine_co2/'
- Scripts copy scripts to your work directory:
 - model v1.py ... rapid-mCDR model
 - run_rapid_mcdr_transect.ipynb ... reads the forcing files, design OAE experiments and run rapid-mCDR; results are saved as netcdf files. If you decide to run additional, experiments please consult me and/or Alex there is a danger that you will run out of storage space.
 - plot_rapid_mcdr_transect.ipynb ... reads the results of rapid-mCDR and do sample plots.
- Data please do not copy the data (you will run out of storage space!):
 - Forcing data for rapid-mCDR in 'data/rapid_mcdr_inputs'
 - Results of rapid-mCDR for 3 different OAE deployment approaches in 'data/rapid_mcdr_outputs' (see the Jupyter scripts for their description)

Your task

Your tasks:

- 1. Familiarize yourself with the rapid-mCDR (see Suselj et al., 2024)
- 2. Design additional diagnostics of the rapid-mCDR results. Some ideas:
 - How does mCDR efficiency change with the time after OAE deployment?
 - How different are efficiencies for summer and winter deployments?
 - Implement additional diagnostics within plot_rapid_mcdr_transect.ipynb,
- 3. Design and analyze different deployment strategies. Some ideas:
 - Deployment at different base years to understand intra-annual variability of efficiencies? Does OAE efficiency in for El-Nino and La-Nina years differ?
 - How does OAE efficiency change with the year of deployment?
 - Run additional simulations with modified run_rapid_mcdr_transect.ipynb script and analyze results. Please consult us on where/how to save simulation data.
- Have Fun!